Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.18.571720

ABSTRACT

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at air-liquid interface (ALI). HCoV-229E, HCoV-NL63 and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally-directed IFNs as potential therapeutics.


Subject(s)
Infections
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.15.566945

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15mut) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15 mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture. SIGNIFICANCESevere acute respiratory syndrome coronavirus (SARS-CoV)-2 causes a spectrum of respiratory disease ranging from asymptomatic infections to severe pneumonia and death. Innate immune responses during SARS-CoV-2 infection have been associated with clinical disease severity, with robust early interferon responses in the nasal epithelium reported to be protective. Thus, elucidating mechanisms through which SARS-CoV-2 induces and antagonizes host innate immune responses is crucial to understanding viral pathogenesis. CoVs encode various innate immune antagonists, including the conserved nonstructural protein 15 (nsp15) which contains an endoribonuclease (EndoU) domain. We demonstrate that SARS-CoV-2 EndoU is a crucial interferon antagonist, by providing further evidence for the role of the conserved CoV nsp15 in antagonizing innate immune activation, thereby optimizing CoV replication.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.24.553565

ABSTRACT

The ongoing SARS-CoV-2 pandemic has been marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to their selection and rapid circulation in the human population. Here we elucidate functional features of each VOC in patient-derived primary nasal cultures grown at air-liquid-interface (ALI) to model upper-respiratory infection, and human lung epithelial cell lines to model lung infection. All VOCs replicated to higher titers than the ancestral virus, and Omicron reached the higher titer in the upper-respiratory system in both nasal cells and parallel human studies. Delta was most adept at cell-to-cell spread and the most cytopathic to nasal cells by compromising cell-barrier integrity and ciliary beating. All VOCs overcame dsRNA-activated cellular responses including interferon signaling, oligoadenylate ribonuclease L (OAS-RNase L) degradation and protein kinase R (PKR) activation. Our findings highlight the functional differences among VOCs and illuminate distinct mechanisms of pathogenesis in infected individuals.


Subject(s)
Lung Diseases , Respiratory Tract Infections
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.13.528205

ABSTRACT

Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyers patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies by a VSV pseudotyped virus assay. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptides and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor beta, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are of low susceptibility to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insights of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.


Subject(s)
Coronavirus Infections , Pulmonary Embolism , Severe Acute Respiratory Syndrome , Inflammation , Weight Loss , COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.17.512617

ABSTRACT

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal (SARS-CoV-2 and MERS-CoV) and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures but diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV replication, enhancing MERS-CoV replication but reducing that of SARS-CoV-2 and HCoV-NL63. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.


Subject(s)
Drug-Related Side Effects and Adverse Reactions
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.30.474519

ABSTRACT

Despite the efficacy of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 5 million individuals worldwide and continues to spread in countries where the vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the activation status and requirement of the master UPR sensor IRE1 kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and the murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1 as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1 whereby it autophosphorylates, but its RNase fails to splice XBP1. Moreover, IRE1 was dispensable for optimal replication in human cells for all coronaviruses tested. Our findings demonstrate that IRE1 activation status differs upon infection with distinct betacoronaviruses and is not essential for efficient replication of any of them. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1 through an unknown mechanism, perhaps as a strategy to eliminate detection by the host immune system.


Subject(s)
Coronavirus Infections , Infections
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.10.468057

ABSTRACT

SARS-CoV-2 emerged in China at the end of 2019 and caused the global pandemic of COVID-19, a disease with high morbidity and mortality. While our understanding of this new virus is rapidly increasing, gaps remain in our understanding of how SARS-CoV-2 can effectively suppress host cell antiviral responses. Recent work on other viruses has demonstrated a novel mechanism through which viral proteins can mimic critical regions of human histone proteins. Histone proteins are responsible for governing genome accessibility and their precise regulation is critical for the ability of a cell to control transcription and respond to viral threats. Here, we show that the protein encoded by ORF8 (Orf8) in SARS-CoV-2 functions as a histone mimic of the ARKS motif in histone 3. Orf8 is associated with chromatin, binds to numerous histone-associated proteins, and is itself acetylated within the histone mimic site. Orf8 expression in cells disrupts multiple critical histone post-translational modifications (PTMs) including H3K9ac, H3K9me3, and H3K27me3 and promotes chromatin compaction while Orf8 lacking the histone mimic motif does not. Further, SARS-CoV-2 infection in human cell lines and postmortem patient lung tissue cause these same disruptions to chromatin. However, deletion of the Orf8 gene from SARS-CoV-2 largely blocks its ability to disrupt host-cell chromatin indicating that Orf8 is responsible for these effects. Finally, deletion of the ORF8 gene affects the host-cell transcriptional response to SARS-CoV-2 infection in multiple cell types and decreases the replication of SARS-CoV-2 in human induced pluripotent stem cell-derived lung alveolar type 2 (iAT2) pulmonary cells. These findings demonstrate a novel function for the poorly understood ORF8-encoded protein and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Finally, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Subject(s)
COVID-19 , Adenocarcinoma, Bronchiolo-Alveolar
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.455959

ABSTRACT

The widespread Coronavirus Disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have a limited toolset available for visualizing SARS-CoV-2 in cells and tissues, particularly in tissues from patients who died from COVID-19. Generally, single-molecule RNA FISH techniques have shown mixed results in formalin fixed paraffin embedded tissues such as those preserved from human autopsies. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA FISH with amplification by hybridization chain reaction (HCR). We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N) as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions, with the ORF1a concentrated around the nucleus and the N showing a diffuse distribution across the cytoplasm. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO), but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages, consistent with phagocytosis of infected cells. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE autopsy specimens. Furthermore, we multiplex this assay with probes for cellular genes to determine what cell-types are infected within the lung. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues as well as extended for other applications including investigating the viral life cycle, viral diagnostics, and drug screening.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Infections , COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.16.448777

ABSTRACT

2',5'-oligoadenylate(2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2',5'-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A. Importantly, many coronaviruses and rotaviruses encode 2-5A degrading enzymes thereby antagonizing RNase L and its antiviral effects. A-kinase anchoring protein 7 (AKAP7), a mammalian counterpart, could possibly limit tissue damage from excessive or prolonged RNase L activation during viral infections or from self double-stranded-RNAs that activate OAS. We show these enzymes, members of the two-histidine-phosphoesterase (2H-PE) superfamily, constitute a sub-family referred here as 2',5'-PEs. 2',5'-PEs from mouse coronavirus (CoV) MHV (NS2), MERS-CoV (NS4b), group A rotavirus (VP3), and mouse (AKAP7) were investigated for their evolutionary relationships and activities. While there was no activity against 3',5'-oligoribonucleotides, all cleaved 2',5'-oligoadenylates efficiently, but with variable activity against other 2',5'-oligonucleotides. The 2',5'-PEs are shown to be metal ion-independent enzymes that cleave trimer 2-5A (2',5'-p3A3) producing mono- or di-adenylates with 2',3'-cyclic phosphate termini. Our results suggest that elimination of 2-5A might be the sole function of viral 2',5'-PEs, thereby promoting viral escape from innate immunity by preventing or limiting the activation of RNase L.


Subject(s)
Coronavirus Infections , Rotavirus Infections , Virus Diseases
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.14.444190

ABSTRACT

Iminosugar glucosidase inhibitors prevent the folding of a range of viral N-linked glycoproteins, ranging from hepatitis B to Ebola. We recently showed they inhibit folding and function of the ACE2 protein, which is the receptor for SARS-CoV-2, and they have also inhibited the SARS Spike polypeptides. Here we report that the imino sugar glucosidase inhibitors, N-butyl deoxynojirimycin (NBDNJ), which is approved for management of lysosomal storage disease (sold as Zavesca), and ureido-N-hexyl deoxynojirimycine (BSBI-19029), suppress the replication of SARS-ncCoV-2/USA/WA1/2020 strain, in tissue culture. Moreover, combinations of either of these iminosugars with Remdesivir were particularly potent in suppressing SARS-CoV-2. Briefly, NBDNJ, 19029 and Remdesivir suppressed SARS-CoV-2 production in A549ACE2 human lung cells with IC90s of ~130 M, ~4.0 M, and 0.006 M respectively. The combination of as little as 0.037 M of NBDNJ or 0.04 M 19029, respectively and 0.002 M Remdesivir yielded IC90s. Medical strategies to manage SARS-CoV-2 infection of people are urgently needed, and although Remdesivir and Favipiravir have shown efficacy, it is limited. NBDNJ was recently reported by others to have tissue culture activity against SARS-CoV-2, so our report confirms this, and extends the findings to a more potent iminosugar, 19029 and combination with Remdesivir. Since both NBDNJ and Remdesivir are both approved and available for human use, the possibility that NBDNJ has mono therapeutic value against SARS-CoV-2 as well as can enhance Remdesivir, may have clinical implications, which are discussed, here.


Subject(s)
COVID-19
11.
preprints.org; 2021.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202104.0122.v1

ABSTRACT

SARS-CoV-2 infects a range of host species. However, the susceptibility of companion animals to SARS-CoV-2 and their potential ability to transmit the virus to humans remains unclear. Here, we present a detailed clinical description of an immunosuppressed dog that was infected with SARS-CoV-2. The dog had severe gastrointestinal (GI) clinical signs, coagulopathy, elevated hepatic transaminases, and met canine systemic inflammatory response syndrome criteria, without respiratory clinical signs, mirroring a subset of humans with GI-restricted COVID-19. Viral sequencing demonstrated divergence from other reported sequences, based on phylogenetic analysis. The dog shed high levels of virus for a prolonged time period with positive virus isolation. The dog’s immunosuppressed state may have increased both susceptibility to infection and disease progression. Together, our findings suggest that certain individual companion animals may be at higher risk for severe SARS-CoV-2 infection, COVID-19-like disease, and high viral shedding, which may pose a transmission risk to humans.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.312769

ABSTRACT

Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). PGE2, one of the most abundant PGs, has diverse biological roles in homeostasis and inflammatory responses. Previous studies have shown that NSAID treatment or inhibition of PGE2 receptor signaling leads to upregulation of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2, thus raising concerns that NSAIDs could increase susceptibility to infection. COX/PGE2 signaling has also been shown to regulate the replication of many viruses, but it is not yet known whether it plays a role in SARS-CoV-2 replication. The purpose of this study was to dissect the effect of NSAIDs on COVID-19 in terms of SARS-CoV-2 entry and replication. We found that SARS-CoV-2 infection induced COX-2 upregulation in diverse human cell culture and mouse systems. However, suppression of COX-2/PGE2 signaling by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. Our findings suggest that COX-2 signaling driven by SARS-CoV-2 may instead play a role in regulating the lung inflammation and injury observed in COVID-19 patients.


Subject(s)
Coronavirus Infections , Pain , Severe Acute Respiratory Syndrome , Pneumonia , COVID-19 , Inflammation
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.312553

ABSTRACT

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection, induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung, and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, while PKR activation is evident in iAT2 and iCM. In SARS-CoV-2 infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however activation of OAS-RNase L and PKR is observed. This is in contrast to MERS-CoV, which effectively inhibits IFN signaling as well as OAS-RNase L and PKR pathways, but similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, both OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2. SignificanceSARS-CoV-2 emergence in late 2019 led to the COVID-19 pandemic that has had devastating effects on human health and the economy. Early innate immune responses are essential for protection against virus invasion. While inadequate innate immune responses are associated with severe COVID-19 diseases, understanding of the interaction of SARS-CoV-2 with host antiviral pathways is minimal. We have characterized the innate immune response to SARS-CoV-2 infections in relevant respiratory tract derived cells and cardiomyocytes and found that SARS-CoV-2 activates two antiviral pathways, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR), while inducing minimal levels of interferon. This in contrast to MERS-CoV which inhibits all three pathways. Activation of these pathways may contribute to the distinctive pathogenesis of SARS-CoV-2.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.13.20173757

ABSTRACT

SARS-CoV-2 has caused a global pandemic, resulting in the need for rapid assays to allow diagnosis and prevention of transmission. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) provides a gold standard assay for SARS-CoV-2 RNA, but tests are expensive and supply chains are potentially fragile, motivating interest in additional assay methods. Reverse transcription and Loop Mediated Isothermal Amplification (RT-LAMP) provides an alternative that uses alternative and often cheaper reagents without the need for thermocyclers. The presence of SARS-CoV-2 RNA is typically detected using dyes to report bulk amplification of DNA; however a common artifact is nonspecific DNA amplification, complicating detection. Here we describe the design and testing of molecular beacons, which allow sequence-specific detection of SARS-CoV-2 genomes with improved discrimination in simple reaction mixtures. We also show how beacons with different fluorescent labels can allow convenient multiplex detection of several amplicons in "single pot" reactions.

SELECTION OF CITATIONS
SEARCH DETAIL